Aplikasi Encoder dan Decoder




1. Tujuan[KEMBALI]

1. Membuat rangkaian garasi otomatis
2. Memahami cara kerja rangkaian garasi otomatis

2. Alat dan Bahan[KEMBALI]

Alat

1. Sumber Tegangan

2. Voltmeter

Voltmeter adalah perangkat elektronik yang berfungsi untuk mengukur tegangan dalam rangkaian  listrik. Voltmeter dalam rangkaian dipasang secara paralel pada dua buah titik yang diukur.

Bahan

1. Sensor IR

FEATURES
• Improved immunity against HF and RF noise
• Low supply current
• Photo detector and preamplifier in one package
• Internal filter for PCM frequency
• Supply voltage: 2.5 V to 5.5 V
• Improved immunity against optical noise
• Insensitive to supply voltage ripple and noise


 

2. Sensor PIR

Features
• 3.0 − 5.75 V Operation
• −40 to 85°C
• 14 Pin SOIC Package
• Integrated 2−Stage Amplifier
• Internal LDO to Drive Sensor
• Internal Oscillator with External RC
• Single or Dual Pulse Detection
• Direct Drive of LED and OUT
• This is a Pb−Free Device Typical


Applications
• Automatic Lighting (Residential and Commercial)
• Automation of Doors
• Motion Triggered Events (Animal photography)



3. Sensor Sentuh 
Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor).
4. Sensor Getar
Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:

   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.

Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:

  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).

Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:

  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor

Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:

   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya

     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.

Spesifikasi :
    -Vsuplai : DC 3.3V-5V
    -Arus : 15mA
    -Sensor : SW-420 Normally Closed
    -Output : digital
    -Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
    -Berat : 10 g

5. Sensor Api

6. Sensor Gas


7. Gerbang NOR 74LS02

8. Inverter 74LS04


9. 4556 Decoder/Demux

10. J-K Flip-Flop 74ALS112

11. Transistor 2N1711

FEATURES
• High current (max. 500 mA)
• Low voltage (max. 50 V).

APPLICATIONS
• DC and wideband amplifiers.

12. Relay

13. Dioda 1N4001

FEATURES
-Low forward voltage drop
-High current capability
-High reliability
-High surge current capability

PACKAGING INFORMATION
-Case: Molded plastic
-Epoxy: UL 94V-0 rate flame retardant
-Lead: Axial leads, solderable per MIL-STD-202, method 208 guaranteed
-Polarity: Color band denotes cathode end
-Mounting position: Any
-Weight: 0.34 grams

14. Resistor 220 dan 10k

FEATURES
• Very low noise (- 40 dB)
• Very low voltage coefficient (5 ppm/V)
• Controlled temperature coefficient
• Flame retardant epoxy coating
• Commercial alternatives to military styles are available with higher power ratings. See appropriate catalog or web page

15. Motor DC


16. LED

 17. Lampu

18.  IC 74LS147 
            Driver 74LS147 merupakan IC TTL yang mempunyai input 4 bit yaitu A, B, C, dan D serta 3 input ekstra RBI, RBO, LT. ketiga input ekstra tersebut membentuk kode seven segment yang akan menyalakan ruas-ruas yang sesuai pada peraga LED di dalamnya.






3. Dasar Teori[KEMBALI]

1. Sensor Infrared

Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Prinsip Kerja Sensor Infrared



Gambar 1. Ilustrasi prinsip kerja sensor infrared

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.


Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor 

Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:


Gambar 3. Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat


Grafik Respon Sensor Infrared

Gambar 4. Grafik respon sensor infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

2. Sensor Pir

        

Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.


Sensor PIR terdiri dari beberapa bagian yaitu :
1. Fresnel Lens
Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

2. IR Filter
IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

3. Pyroelectric Sensor
Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

Grafik Respon Sensor PIR

1. Respon terhadap arah, jarak, dan kecepatan

2. Grafik Respon terhadap Suhu


3. Sensor Sentuh 

ouch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

 

Sensor Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya

4. Sensor Getar

Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:

- Pembesaran sinyal getaran

- Penyaringan sinyal getaran dari sinyal pengganggu.

- Penguraian sinyal, dan lainnya.

Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:

- Sensor penyimpangan getaran (displacement transducer)

- Sensor kecepatan getaran (velocity tranducer)

- Sensor percepatam getaran (accelerometer).

Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:

- Jenis sinyal getaran

- Rentang frekuensi pengukuran

- Ukuran dan berat objek getaran.

- Sensitivitas sensor

Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:

- Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya (power supply) dari luar, misalnya Velocity Transducer.

- Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.

Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :


5. Gerbang NOR 74LS02

Arti NOR adalah NOT OR atau BUKAN OR, Gerbang NOR merupakan kombinasi dari Gerbang OR dan Gerbang NOT yang menghasilkan kebalikan dari Keluaran (Output) Gerbang OR. Gerbang NOR akan menghasilkan Keluaran Logika 0 jika salah satu dari Masukan (Input) bernilai Logika 1 dan jika ingin mendapatkan Keluaran Logika 1, maka semua Masukan (Input) harus bernilai Logika 0.

Simbol dan Tabel Kebenaran Gerbang NOR (NOR Gate) 

6. Inverter 74LS04

Gerbang NOT hanya memerlukan sebuah Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang NOT disebut juga dengan Inverter (Pembalik) karena menghasilkan Keluaran (Output) yang berlawanan (kebalikan) dengan Masukan atau Inputnya. Berarti jika kita ingin mendapatkan Keluaran (Output) dengan nilai Logika 0 maka Input atau Masukannya harus bernilai Logika 1. Gerbang NOT biasanya dilambangkan dengan simbol minus (“-“) di atas Variabel Inputnya.

Simbol dan Tabel Kebenaran Gerbang NOT (NOT Gate)  

7. 4556 Decoder/Demux

Secara sederhana, dapat dikatakan bahwa decoder adalah kebalikan dari encoder. Decoder adalah rangkaian kombinasi yang memiliki jalur input ‘n’ dan maksimum jalur output 2n. Salah satu dari output ini akan menjadi "Aktif Tinggi" berdasarkan kombinasi dari input yang ada ketika decoder diaktifkan.
Dengan kata lain bahwa decoder adalah rangkaian yang mampu mendeteksi kode tertentu. Output dari decoder tidak lain adalah syarat minimum dari baris variabel input ‘n’, ketika diaktifkan.

Decoder 2 ke 4

Merupakan jenis decoder yang memiliki 2 input 4 output. Kita misalkan 2 input yaitu A1 dan A0 dan 4 output yaitu Y3, Y2, Y1 dan Y0. Maka diagram blok decoder 2 ke 4 ditunjukkan pada gambar dibawah ini.

Salah satu dari empat output ini akan menjadi '1' untuk setiap kombinasi input saat diaktifkan, E adalah '1'. Adapaun Tabel Kebenaran dari decoder 2 ke 4 ditunjukkan pada gambar dibawah ini.

Dari tabel kebenaran diatas, kita dapat menulis fungsi Boolean untuk setiap output decoder tersebut

Y3=E.A1.A0

Y2=E.A1.A0

Y1=E.A1′.A0

Y0=E.A1′.A0

Setiap output memiliki satu produk. Jadi, secara total ada 4 produk. Kami dapat menerapkan ke-4 produk ini dengan menggunakan empat gerbang AND yang masing-masing memiliki tiga input & dua inverter. 

Oleh karena itu, output dari decoder adalah "min terms" dari dua variabel input A1 & A0, ketika aktif, E adalah 1. Jika tidak diaktifkan, E adalah nol, maka semua output decoder adalah sama dengan nol.

8. J-K Flip-Flop 74ALS112

J-K Flip-flop juga merupakan pengembangan dari S-R Flip-flop dan paling banyak digunakan. J-K Flip-flop memiliki 3 terminal Input J, K dan CL (Clock). Berikut ini adalah diagram logika J-K Flip-flop.

9. Transistor 2N1711

Karakteristik dasar dari transistor ini adalah dapat bertindak sebagai isolator dan konduktor dengan mengatur pemberian tegangan yang kecil. Karakteristik transistor yang seperti ini memungkinkan transistor dapat digunakan sebagai saklar (swicthing) maupun sebagai penguat.

Dengan metode pengaturan penerapan tegangan pada basis transistor, kita bisa mengkondisikan transistor pada tiga keadaan (wilayah) yang berbeda :

·                  kondisi Aktif , Transistor berfungsi sebagai penguat dengan Ic = β * Ib

·                  Saturasi , Transistor beroperasi secara terhubung penuh sebagai saklar tertutup dengan Ic = I

·                  Cutt Off , Transistor dalam keadaan Off sebagai saklar terbuka dengan Ic = 0

Transistor bipolar terdiri dari dua jenis yang berbeda berdasarkan penyusunan dua buah dioda di dalamnya. Yaitu jenis PNP dan jenis NPN. Sementara konstruksi dari transistor memiliki tiga buah terminal dengan nama yang berbeda : basis (B), emitor (E) dan kolektor (C).

Prinsip dasar dari kerja transistor adalah mengendalikan laju aliran arus listrik yang mengalir melalui kaki emitor dan koleketor dengan memasukan bias tegangan kecil pada basis. Meskipun arus bias kecil namun kita bisa mengendalikan aliran arus yang besar pada kolektor dan emitor. Cara kerja transistor seperti ini layaknya sebuah kran / saklar yang mengatur aliran arus listrik.

Prinsip kerja seperti ini berlaku untuk kedua jenis transistor yang berbeda baik PNP maupun NPN. Perbedaannya terletak pada pemberian bias pada basis transistor masing masing. Dimana bias basis untuk transistor PNP adalah negatif, sementara untuk transistor NPN adalah positif.

Simbol transistor bipolar ditunjukkan pada gambar diatas. Perbedaan simbol dari keduanya terletak pada arah panah yang menunjukkan kaki emitor. Dimana untuk transistor jenis NPN, arah panah menuju keluar yang berarti aliran arus dari kolektor menuju ke emitor. Sedangkan transistor jenis PNP ditunjukkan dengan arah panah masuk ke dalam yang berarti aliran arus dari emitor menuju kolektor.

Konfigurasi Transistor Pada Rangkaian 

Seperti kita ketahui, transistor memiliki tiga buah terminal yang berbeda. Sehingga terdapat tiga macam konfigurasi pemasangan transistor pada rangkaian elektronika. Dimana salah satu terminal transitor akan terhubung dengan ground atau dibumikan.

Setiap jenis konfigurasi transistor pada rangkaian tersebut mempunyai karakteristik yang berbeda terhadap respon arus yang diberikan kepadanya. Ketiga jenis konfigurasi tersebut adalah :

1.                Common Base 

2.                Common Emitter

3.                Common Collector

10. Relay

Relay adalah komponen elektronika yang berupa saklar atau switch elektrik yang dioperasikan menggunakan listrik. Relay disebut sebagai komponen electromechanical karena terdiri dari dua bagian utama yaitu coil atau elektromagnet dan kontak saklar atau mekanikal. Komponen relay menggunakan prinsip elektromagnetik sebagai penggerak kontak saklar, sehingga dengan menggunakan arus listrik yang kecil atau low power, dapat menghantarkan arus listrik yang memiliki tegangan lebih tinggi.

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

1.                Electromagnet (Coil)

2.                Armature

3.                Switch Contact Point (Saklar)

4.                Spring

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

·                  Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

·                  Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

11. Dioda 1N4001

Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.

Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa Jenis, diantaranya adalah :

·                  Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.

·                  Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.

·                  Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan

·                  Dioda Photo yang berfungsi sebagai sensor cahaya

·                  Dioda Schottky yang berfungsi sebagai Pengendali

Cara Mengukur Dioda dengan Multimeter Analog

1.                Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100

2.                Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)

3.                Hubungkan Probe Hitam pada Terminal Anoda.

4.                Baca hasil Pengukuran di Display Multimeter

5.                Jarum pada Display Multimeter harus bergerak ke kanan

6.                Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).

7.                Baca hasil Pengukuran di Display Multimeter

8.                Jarum harus tidak bergerak.
**Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.

12. Resistor 220 dan 10k

Resistor merupakan salah satu komponen yang paling sering ditemukan dalam Rangkaian Elektronika. Hampir setiap peralatan Elektronika menggunakannya. Pada dasarnya Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika. Resistor atau dalam bahasa Indonesia sering disebut dengan Hambatan atau Tahanan dan biasanya disingkat dengan Huruf “R”. Satuan Hambatan atau Resistansi Resistor adalah OHM (Ω). Sebutan “OHM” ini diambil dari nama penemunya yaitu Georg Simon Ohm yang juga merupakan seorang Fisikawan Jerman.

Fungsi-fungsi Resistor di dalam Rangkaian Elektronika diantaranya adalah sebagai berikut :

·                  Sebagai Pembatas Arus listrik

·                  Sebagai Pengatur Arus listrik

·                  Sebagai Pembagi Tegangan listrik

·                  Sebagai Penurun Tegangan listrik

 Untuk menghitung nilai resistansi resistor:

·                  Untuk resistor 4 gelang warna, warna 1, 2, dan 3 dituliskan langsung nilainya. Warna 4 adalah toleransi.

·                  Untuk resistor 5 gelang warna, warna 1, 2, 3, dan 4 dituliskan langsung nilainya. Warna 5 adalah toleransi.

13. Motor DC

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

14. LED

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.

Cara Kerja LED (Light Emitting Diode)

Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah Energi Listrik menjadi Energi Cahaya.

Cara Mengetahui Polaritas LED 

Untuk mengetahui polaritas terminal Anoda (+) dan Katoda (-) pada LED. Kita dapat melihatnya secara fisik berdasarkan gambar diatas. Ciri-ciri Terminal Anoda pada LED adalah kaki yang lebih panjang dan juga Lead Frame yang lebih kecil. Sedangkan ciri-ciri Terminal Katoda adalah Kaki yang lebih pendek dengan Lead Frame yang besar serta terletak di sisi yang Flat.

Warna-warna LED (Light Emitting Diode)

Saat ini, LED telah memiliki beranekaragam warna, diantaranya seperti warna merah, kuning, biru, putih, hijau, jingga dan infra merah. Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya.

15. Lampu

Lampu merupakan sebuah peranti yang mengubah energi listrik menjadi energi cahaya.


4. Percobaan[KEMBALI]

Langkah Percobaan

1. Siapkan alat dan bahan
2. Perhatikan spesifikasi dari masing-masing alat dan bahan
3. Rangkai alat dan bahan tersebut seperti pada gambar di bawah
4. Uji coba rangkaian


5. Gambar Rangkaian [KEMBALI]



6. Prinsip kerja: [KEMBALI]

Saat memasukkan mobil ke garasi, sensor PIR yang pertama kali mendeteksi adanya mobil sehingga tegangan outputnya masuk ke kaki basis Q2>0.7V. Q2 aktif, arus mengalir melewati RL2 sehingga menghasilkan medan magnet yang cukup untuk menarik saklar ke kiri. Motor terhubung dengan sumber arus B1 dan membuka pintu garasi. Switch dapat digunakan untuk menahan pintu garasi tetap terbuka. Saat mobil masuk, sensor IR mendeteksi gerak mobil, tegangan outputnya masuk ke kaki basis Q1>0.7V. Q1 aktif, arus mengalir melewati RL1 sehingga menghasilkan medan magnet yang cukup untuk menarik saklar ke kanan. Sensor PIR kembali berlogika "0" (Sumber arus B1 akan terputus) dan sensor IR akan berlogika "1", keduanya diinputkan ke gerbang NOR, dimana pada input dari sensor IR diberi sebuah inverter (logika "1" menjadi "0"). Saat ini, output NOR akan berlogika "1" dan akan menghasilkan tegangan untuk mengaktifkan transistor Q3. Transistor Q3 aktif, arus mengalir melewati RL3 dan menghasilkan medan magnet untuk menarik saklar ke kiri. Motor akan terhubung dengan sumber arus B2. Motor akan aktif untuk menutup pintu garasi.

Lampu flip-flop akan aktif saat sensor PIR mendeteksi mobil. Kaki A dan B pada U3 (Decoder/Demux) akan berlogika "1" (karena terhubung dengan Vout dari sensor PIR). Kaki E yang terhubung ke ground akan berlogika "0". Output U3 secara berurutan dari Q0 sampai Q3 adalah 1,1,1,0. Dan keempat Output tersebut terhubung ke U2(JK Flip-Flop). Output Q0 masuk ke kaki Set U2, Q1 ke kaki J, Q2 ke kaki K, dan Q3 ke U4(NOT) sehingga logika "0" diubah menjadi logika "1" dan masuk ke kaki Reset. LED akan menyala secara bergantian. Sedangkan saat tidak ada mobil dideteksi, kaki A dan B pada U3 akan berlogika "0" karena terhubung dengan ground. Sehingga output Q3 secara berurutan adalah 0,1,1,1. Kaki Set akan berlogika "0" dan kaki Reset juga akan berlogika "0", sehingga LED tidak menyala.

ketika Touch Sensor mendeteksi adanya sentuhan (berlogika 1) dan Vibration tidak mendeteksi adanya getaran ( berlogika 0). Output dari Touch sensor ( yang berlogika 1) akan masuk ke input j dari flip-flop. Sesuai dengan tabel kebenaannya, jika input j berlogika 1 maka output yang akan aktif adalah Q, sehingga ada arus yang mengalir dari Q masuk ke r1 terus ke base Q1 terus ke emotor dan ke ground. Karena tegangan pada Q1 lebih besar dari pada tegangan VBE maka Q1 akan on, karena Q1 on maka ada arus dari power suplly masuk ke relay sehingga switch pada relay berpindah ke kiri. Dari relay arus masuk ke colector Q1 terus ke emitor dan ke ground. Karena relay on dan switch berpindah ke kiri  maka arus mengali dari batrai menuju motor, sehingga  motor on ( Penutup Closet terbuka ). dari batrai arus juga masuk ke r2 terus ke led sehingga led menyala, dari led arus kembali ke relay.

ketika Touch sensor tidak mendeteksi adanya sentuhan (berlogika 0) dan Vibration Sensor mendeteksi adanya getaran ( berlogika 1). Vibration Sensor ( yang berlogika 1) akan masuk ke input k dari flip-flop. Sesuai dengan tabel kebenaannya, jika input k berlogika 1 maka output yang akan aktif adalah Q-, sehingga ada arus yang mengalir dari Q- masuk ke r3 terus ke base Q2 terus ke emotor dan ke ground. Karena tegangan pada Q2 lebih besar dari pada tegangan VBE maka Q2 akan on, karena Q2 on maka ada arus dari power suplly masuk ke relay sehingga switch pada relay berpindah ke kiri. Dari relay arus masuk ke colector Q2 terus ke emitor dan ke ground. Karena relay on dan switch berpindah ke kiri  maka arus mengali dari batrai menuju speaker, sehingga  Speaker on. dari batrai arus juga masuk ke r4 terus ke led sehingga led menyala, dari led arus kembali ke relay.

ketika touch sensor mendeteksi adanya sentuhan ( berlogika 1). Output dari Touch Sensor ( yang berlogika 1) akan masuk ke input j dari flip-flop. Sesuai dengan tabel kebenaannya, jika input j berlogika 1 maka output yang akan aktif adalah Q, sehingga ada arus yang mengalir dari Q masuk ke r1 terus ke base Q1 terus ke emotor dan ke ground. Karena tegangan pada Q1 lebih besar dari pada tegangan VBE maka Q1 akan on, karena Q1 on maka ada arus dari power suplly masuk ke relay sehingga switch pada relay berpindah ke kiri. Dari relay arus masuk ke colector Q1 terus ke emitor dan ke ground. Karena relay on dan switch berpindah ke kiri  maka arus mengali dari batrai menuju motor, sehingga  motor on ( Pintu Terbuka ). dari batrai arus juga masuk ke r2 terus ke led sehingga led menyala, dari led arus kembali ke relay.

6. Video [KEMBALI]



7. Link Download File [KEMBALI]

Download HTML

Download Rangkaian

Download Video

Download Datasheet Pir 

Download Datasheet Touch

Download Datasheet Vibration

Download Datasheet IR

Download Library Pir

Download Library Touch

Download Library Vibration

Download Library IR

Download datasheet relay klik disini

Download datasheet NPN klik disini

Download datasheet LED klik disini

Download datasheet Motor DC klik disini

Download datasheet JFET klik disini

Download datasheet dioda klik disini

Download datasheet Op Amp klik disini

Download datasheet baterai klik disini



Tidak ada komentar:

Posting Komentar